Lamellipodial Actin Mechanically Links Myosin Activity with Adhesion-Site Formation
نویسندگان
چکیده
Cell motility proceeds by cycles of edge protrusion, adhesion, and retraction. Whether these functions are coordinated by biochemical or biomechanical processes is unknown. We find that myosin II pulls the rear of the lamellipodial actin network, causing upward bending, edge retraction, and initiation of new adhesion sites. The network then separates from the edge and condenses over the myosin. Protrusion resumes as lamellipodial actin regenerates from the front and extends rearward until it reaches newly assembled myosin, initiating the next cycle. Upward bending, observed by evanescence and electron microscopy, results in ruffle formation when adhesion strength is low. Correlative fluorescence and electron microscopy shows that the regenerating lamellipodium forms a cohesive, separable layer of actin above the lamellum. Thus, actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process.
منابع مشابه
Myosin II directly binds and inhibits Dbl family guanine nucleotide exchange factors: a possible link to Rho family GTPases
Cell migration requires the coordinated spatiotemporal regulation of actomyosin contraction and cell protrusion/adhesion. Nonmuscle myosin II (MII) controls Rac1 and Cdc42 activation, and cell protrusion and focal complex formation in migrating cells. However, these mechanisms are poorly understood. Here, we show that MII interacts specifically with multiple Dbl family guanine nucleotide exchan...
متن کاملRole of Actin Polymerization and Adhesion to Extracellular Matrix in Rac- and Rho-induced Cytoskeletal Reorganization
Most animal cells use a combination of actin-myosin-based contraction and actin polymerization- based protrusion to control their shape and motility. The small GTPase Rho triggers the formation of contractile stress fibers and focal adhesion complexes (Ridley, A.J., and A. Hall. 1992. Cell. 70:389-399) while a close relative, Rac, induces lamellipodial protrusions and focal complexes in the lam...
متن کاملThe cytoskeletal mechanisms of cell–cell junction formation in endothelial cells
The actin cytoskeleton and associated proteins play a vital role in cell-cell adhesion. However, the procedure by which cells establish adherens junctions remains unclear. We investigated the dynamics of cell-cell junction formation and the corresponding architecture of the underlying cytoskeleton in cultured human umbilical vein endothelial cells. We show that the initial interaction between c...
متن کاملMemo–RhoA–mDia1 signaling controls microtubules, the actin network, and adhesion site formation in migrating cells
Actin assembly at the cell front drives membrane protrusion and initiates the cell migration cycle. Microtubules (MTs) extend within forward protrusions to sustain cell polarity and promote adhesion site turnover. Memo is an effector of the ErbB2 receptor tyrosine kinase involved in breast carcinoma cell migration. However, its mechanism of action remained unknown. We report in this study that ...
متن کاملA free-boundary model of a motile cell explains turning behavior
To understand shapes and movements of cells undergoing lamellipodial motility, we systematically explore minimal free-boundary models of actin-myosin contractility consisting of the force-balance and myosin transport equations. The models account for isotropic contraction proportional to myosin density, viscous stresses in the actin network, and constant-strength viscous-like adhesion. The cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 128 شماره
صفحات -
تاریخ انتشار 2007